
PFCA-Net: Pyramid Feature Fusion and Cross Content Attention
Network for Automated Audio Captioning

Jianyuan Sun1, Wenwu Wang2, Mark D. Plumbley2

1Department of Computer Science, University of Sheffield, UK
2Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK
jianyuan.sun@sheffield.ac.uk, w.wang@surrey.ac.uk, m.plumbley@surrey.ac.uk

Abstract
Automated audio captioning (AAC) aims to generate textual de-
scriptions for a given audio clip. Despite the existing AAC mod-
els obtaining promising performance, they struggle to capture
intricate audio patterns due to only using a high-dimensional
representation. In this paper, we propose a new encoder-
decoder model for AAC, called the Pyramid Feature Fusion and
Cross Context Attention Network (PFCA-Net). In PFCA-Net,
the encoder is constructed using a pyramid network, facilitat-
ing the extraction of audio features across multiple scales. It
achieves this by combining top-down and bottom-up connec-
tions to fuse features across scales, resulting in feature maps
at various scales. In the decoder, cross-content attention is de-
signed to fuse the different scale features which allows the prop-
agation of information from a low-scale to a high-scale. Ex-
perimental results show that PFCA-Net achieves considerable
improvement over existing models.
Index Terms: Pyramid feature fusion, high-dimensional repre-
sentation, cross-context attention network

1. Introduction
Automated audio captioning (AAC) is the task of generating
text descriptions of an audio clip, which can be performed
in real-time, as the audio is being played, or offline, on pre-
recorded audio files. It is a useful tool for providing accessibil-
ity to media for the impaired of hearing, generating subtitles for
audio in a television program, and for content translation and
summarization [1, 2].

A popular approach to AAC is to use an encoder-decoder
architecture, where the encoder is used to extract features from
an audio signal, while the decoder is used to generate text de-
scriptions based on the audio features. In the early years, a
recurrent neural network (RNN) [3] is used in the encoder to
extract the audio features. For example, Drossos et al. [1] use
a multi-layered and bi-directional gated recurrent unit (GRU)
as the encoder, and a multi-layered GRU as the decoder. Sub-
sequently, convolutional neural networks (CNNs) are applied
in audio captioning, such as the use of convolutional recurrent
neural network (CRNN) as the encoder by combining CNNs
and RNNs in [4], and the use of the VGG network [5] by Kim et
al. [6]. Moreover, Mei et al. [7] use a pre-trained CNN model,
called PANNs, pre-trained on a large dataset AudioSet [8], as
the encoder, and then a transformer with multi-head attention
as the decoder to predict the captions according to the audio
features.

Recently, Liu et al. [9] use contrastive learning to improve
audio captioning performance in a data scarcity scenario. Chen
et al. [10] introduce an audio-head and a text-head to extract au-
dio and text information in the pre-trained encoder. Both meth-

ods aim to learn embeddings that are close together for positive
audio-text pairs and far apart for negative audio-text pairs, by
combining the cross-entropy loss with a contrastive loss [9, 10].
In addition, Xu et al. [11] explore the local and global audio
information by using transfer learning. Most existing methods
use a shallow transformer decoder (with only two transformer
blocks) due to the limited amount of data available [7, 12, 13].
Deep transformer architectures, from natural language process-
ing (NLP), are also used for AAC. For example, Xu et al. em-
ployed the pre-trained BERT [14] as the decoder to generate the
captions [15]. Yuma et al. [16] introduced a cascaded system
that utilizes a pre-trained large-scale language model to direct
the generation of audio captions. This approach assists in alle-
viating the challenges stemming from the limited training data
available for audio captioning tasks.

Although existing methods achieve promising results, most
of them encode the audio signals with a high-dimensional rep-
resentation. This may not be sufficient as audio signals con-
tain acoustic events, scenes, and noise and clutter with different
scales. In this paper, we propose a new encoder-decoder model
called the Pyramid Feature Fusion and Cross Context Attention
Network (PFCA-Net) for AAC, motivated by the success of the
feature pyramid networks (FPN) developed for object detection
tasks [17]. In PFCA-Net, we design an improved FPN in the en-
coder for extracting multi-scale audio features, by upsampling
lower-resolution feature maps with a bottom-up pathway and
then combining these upsampled maps with higher-resolution
feature maps from the CNN with a top-down pathway [17, 18].
This allows the network to capture contextual information from
a wide range of scales, thus offering advantages over traditional
CNNs. In addition, we design a cross-content attention scheme
to fuse the features at different scales, which enables effective
information propagation among them.

The main contributions of this work are summarized as
follows: (1) a new encoder-decoder model is proposed called
PFCA for AAC. In the encoder, an improved FPN is proposed
that consists of a combination of the bottom-up, the top-down,
and the lateral connections to fuse features across scales and
achieve a high-level feature map at different scales. Our work
is also the first attempt to use a pyramid neural network to learn
the feature embedding for audio captioning. (2) In the decoder,
cross-context attention is designed to integrate the features of
different scales, which allows effective information propagation
between the multi-scale features.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the proposed PFCA-Net in detail. Section 3
presents experimental results. Finally, Section 4 concludes the
paper.



2. Proposed method
In this section, we introduce the proposed PFCA-Net, which
consists of a feature pyramid network (FPN) encoder and a de-
coder based on a transformer with cross-content attention, as
shown in Fig. 1.
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Figure 1: The architecture of the proposed PFCA-Net.

2.1. Encoder: Feature Pyramid Network (FPN)

The original FPN [17] is based on ResNets [19], and the con-
struction of the pyramid network includes a bottom-up pathway,
a top-down pathway, and lateral connections, where the bottom-
up pathway involves computing a feature hierarchy consisting
of feature maps at different scales with a scaling step of 2. This
bottom-up pathway is also called the feed-forward computa-
tion of the backbone. In particular, many layers produce output
maps of the same size and these layers are called in the same
network stage. In the original FPN, it designs one pyramid level
for each stage and chooses the output of the last layer of each
stage. Because the deepest layer of each stage has a feature with
more information [17]. In the ResNets [19], it uses the feature
output of the last residual block of each stage.

For the top-down pathway and lateral connections of the
original FPN, the top-down pathway creates higher resolution
features by upsampling feature maps with stronger semantic in-
formation obtained from higher pyramid levels. These features
are improved by incorporating information from the bottom-up
pathway through lateral connections. Each lateral connection
combines feature maps of the same spatial size from both the
bottom-up and top-down pathways. While the bottom-up fea-
ture map has lower-level semantics, its activations are more ac-
curately localized since it underwent fewer subsampling steps.
The upsample spatial resolution uses a factor of 2 by employing
the nearest neighbor upsampling for simplicity. Then, the up-
sampled map is merged with the corresponding bottom-up map
by performing a 1×1 convolutional layer for the lateral connec-
tions to reduce channel dimensions firstly and using element-
wise addition.

Inspired by the original FPN [17, 18], the structure of the

improved FPN encoder is shown in Fig. 2. In this paper, the im-
proved FPN is based on pre-trained CNN10, i.e., PANNs [20].
It also has the bottom-up pathway Ci, the top-down pathway
Mi, and the lateral connections Li to construct pyramid lev-
els. Where PANNs consist of four convolutional blocks and
two linear layers. Each convolutional block has two layers
with a kernel size 3 × 3, followed by the normalization and
ReLU activation layer. The channel numbers for these blocks
are 64, 128, 256, and 512. Additionally, a 2 × 2 average pool-
ing is applied for downsampling. After the final convolutional
block, a global average pooling is performed, followed by two
linear layers to produce the final feature representation.
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Figure 2: The architecture of the proposed FPN encoder in
PFCA-Net.

In Fig. 2, it can be observed that the improved FPN has
the bottom-up pathway Ci, the top-down pathway Mi, and the
lateral connections Li (need to note in the figure). The bottom-
up pathway Ci is the feed-forward computation of the output
of i-th stage convolutional block. Furthermore, the symbol
i = 0, · · · , I represents the i-th stage convolutional block of the
network, where i = 0 indicates the input log mel-spectrogram
image and I = 4 is the total number of stages in the im-
proved FPN. To enhance performance, each lateral connection
Li merges feature maps of identical spatial dimensions obtained
from both the bottom-up pathway Ci and the top-down pathway
Mi. Therefore, the shallow feature layers M2 and M3 also con-
tain the high-level information as the deep feature layer M4.
The top-down feature map Mi is computed by Mi+1 and Ci as
follows,

Mi =

{
Fi(Mi+1, Li(Ci)), i < I

Li(Ci), i = I.

The fusion operation Fi comprises two essential steps. Ini-
tially, Mi+1 undergoes an upsampling process. Subsequently,
the upsampled Mi+1 is integrated with lateral information
through element-wise addition. The lateral information is de-
rived from lateral connections, which involve a 3 × 3 convo-
lutional block operation. Following each feature representation
Mi (where i = 2, 3, 4), a linear layer is applied to produce the
final feature representations Pi with dimensions 1024, 256, and
128, corresponding to i = 2, 3, 4. In contrast to the original
FPN [17], our FPN employs a 3 × 3 convolution block opera-
tion rather than the 1 × 1 convolution operation in lateral con-
nections. Additionally, we employ a linear layer to obtain Pi

from Mi instead of utilizing the 3× 3 convolution operation in
the original FPN.

2.2. Decoder: Transformer with Cross-Content Attention

The PFCA-Net decoder includes three parts, i.e., the word em-
bedding layer, a transformer block, and a linear layer. The input



words are coded through the word embedding layer into word
vectors of fixed dimensions and then fed into the transformer
decoder. The word vectors are obtained through a pre-trained
Word2Vec model on all caption corpus [21]. The decoder of
PFCA-Net is a transformer block that uses multi-head attention
with a fixed number of heads. We set the number of heads as 4
and the dimension of the hidden layer is 128 in the decoder of
PFCA-Net.

For each head, we proposed cross-content attention based
on the multi-scale feature outputs from the encoder. More
specifically, the high-scale feature P4 output by the FPN en-
coder, the input ground truth, and the low-scale feature P3 are
transformed into query set Q, key set K, and value set V , re-
spectively, through matrix multiplication with three learnable
matrices WQ, WK , WV ∈ Rd×dk , where d is the dimension
of the features and dk is the dimension of the attention heads.
Before the high-scale feature P4 and the low-scale feature P3

transformer into query set Q and value set V , a linear layer is
applied to make P4 and P3 have the same dimension that is 128.
Then, the dot-product attention is calculated as

Attn(Q,K, V ) = Softmax(
QKT

√
dk

)V.

The outputs of multi-heads are ensembled by a linear trans-
formation matrix Wo ∈ R(h×dk)×dk , as follows

MultiHead(Q,K, V ) = Concat(head1, ..., headh)Wo.

The difference between the original self-attention and our
cross-content attention lies in the method for computing the at-
tention. For the original self-attention, the query set Q and the
value set V are both calculated from high-dimensional features.
In our cross-content attention, the query set Q and the value
set V are calculated from different scale features. In this way,
the proposed cross-content attention enables PFCA-Net to bet-
ter understand the relationships among different scale features
and more effectively capture semantic information among fea-
tures.

3. Experiments
In this section, we perform experimental studies of the proposed
FPCA-Net and compare it with other existing methods for AAC
on two public datasets, i.e., the Clotho [22] and AudioCaps [6]
datasets.

3.1. Datasets

Clotho [22] is a well-known audio captioning dataset containing
audio clips of various lengths between 15 and 30 seconds col-
lected from the Freesound archive. The audio clips are accom-
panied by 5 captions annotated by different Amazon Mechani-
cal Turk employees, with each caption containing 8-20 words.
In our experiment, we use the Clotho v2 dataset, specifically
the version released for Task 6 of the DCASE 2021 Challenge.
The Clotho v2 dataset is split into three parts: a development
set with 3839 samples, a validation set with 1045 samples, and
an evaluation set with 1045 samples. To comply with the set-
tings of the baseline methods, we merge the development and
validation sets to form a training set of 4884 samples. The eval-
uation set is used as the test set. In addition, audio clips are
combined with one of their five captions as a training sample in
the training set.

AudioCaps [6] is a large audio captioning dataset that in-
cludes 50, 000 audio clips, each with a duration of 10 seconds.

The dataset is split into three parts, with 49, 274 audio clips for
training, 497 clips for validation, and 957 clips for testing. Each
audio clip in the training set has one caption and each audio clip
in the validation and test sets has 5 captions. Each caption con-
tains 3 to 20 words.

3.2. Data Pre-Processing

For each audio clip, a 1024-point Hanning window with a hop
size of 512 points is employed to obtain 64-dimensional log
mel-spectrograms as the input of the proposed FPCA-Net. In
addition, we apply the SpecAugment method to augment the log
mel-spectrogram of audio clips in the training data using “zero-
value masking” and “mini-batch based mixture masking”. The
captions in the Clotho and AudioCaps datasets are converted to
lowercase, with punctuation removed. We also add two special
tokens, “<sos >” and “<eos >”, at the beginning and end of
each caption.

3.3. Experimental Setups

We train the proposed FPCA-Net model by employing the
Adam optimizer [23]. The batch size is set to 32. The training
epoch is 30 with an initial learning rate of 5 × 10−4. Addi-
tionally, the pre-trained Word2Vec model [24] is employed to
obtain the word embedding for all the captions in the Clotho
and AudioCaps datasets.

3.4. Performance Metrics

To evaluate the performance of the models, we use mul-
tiple metrics including machine translation metrics such as
BLEU [25], METEOR [26], and ROUGE [27], as well as
captioning-specific metrics such as CIDEr [28], SPICE [29],
and SPIDEr [30]. BLEU measures the n-gram precision of the
generated text, METEOR is a word-to-word matching metric
that calculates the harmonic mean of recall and precision, and
ROUGE is an F-measure based on the longest common sub-
sequence. CIDEr uses the term frequency-inverse document
frequency to calculate the score, SPICE uses captions from
scene graphs to determine the F-score, and SPIDEr is the mean
score of CIDEr and SPICE.

3.5. Compared Models

For the Clotho dataset, we compare the proposed FPCA-Net
with four existing models. The first one is the PANNs-Trans
model [7] which is an encoder-decoder framework consisting of
a pre-trained CNN10 encoder called PANNs and a transformer
decoder. The second is the CL4AC model [9] which aims to
correct the inaccurate audio-text alignment with a contrastive
learning loss, based on the PANNs-Trans model [7]. The third
one is the AT-CNN10 [11] model that explores the local and
global audio information by using transfer learning based on
audio tagging and acoustic scene classification techniques. The
fourth model is the PreCNN-Transformer [12] model, which is
similar to the PANNs-Trans model [7], but its encoder is a CNN
pre-trained for an acoustic event tagging task.

For the AudioCaps dataset, we also compared with the
PANNs-Trans [7] and the AT-CNN10 [11]. In addition, we used
the Pre-Bert model [15], GPT-2 model [15], and TopDown-
Att [6]. Here, Pre-Bert is a transformer model using the
Pre-trained BERT [14] from the Natural Language Processing
(NLP).

To verify the impact of different scale features on model
performance, the results on Clotho and AudioCaps datasets us-



Table 1: The experimental results on the Clotho and AudioCaps datasets.

Dataset Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr

PANNs-Trans [7] 0.561 0.364 0.243 0.159 0.375 0.172 0.391 0.120 0.256
Clotho CL4AC model [9] 0.553 0.349 0.226 0.143 0.374 0.168 0.368 0.115 0.242

AT-CNN10 [11] 0.556 0.363 0.242 0.159 0.368 0.169 0.377 0.115 0.246
PreCNN-Transfor [12] 0.534 0.343 0.230 0.151 0.356 0.160 0.346 0.108 0.227
PFCA-Net (P4 and P2) 0.555 0.356 0.234 0.147 0.167 0.369 0.359 0.119 0.239
PFCA-Net (our model) 0.564 0.366 0.246 0.160 0.375 0.174 0.401 0.123 0.262

PANNs-Trans [7] 0.667 0.491 0.350 0.248 0.468 0.229 0.643 0.165 0.404
AudioCaps Pre-Bert [15] 0.667 0.491 0.354 0.247 0.475 0.232 0.654 0.167 0.410

AT-CNN10 [11] 0.655 0.476 0.335 0.231 0.467 0.229 0.660 0.168 0.414
GPT-2 [16] 0.655 0.476 0.335 0.231 0.467 0.229 0.660 0.168 0.414

TopDown-Att [6] 0.614 0.446 0.317 0.219 0.450 0.203 0.593 0.144 0.369
PFCA-Net (P4 and P2) 0.671 0.501 0.367 0.264 0.231 0.482 0.655 0.168 0.411
PFCA-Net (our model) 0.678 0.507 0.374 0.268 0.486 0.234 0.698 0.173 0.436

Table 2: The generated captions for the test audio clips from the AudioCaps dataset.

Audio clip Yti66RjZWTp0.wav Yz4uELRI6p08.wav
Ground truth 1. a male speaks as metal clicks and a gun fires once. 1. loud laugh ting and mumbling with s person laughing faintly and briefly in the distance.

2. a man speaks and a weapon cocks and fires. 2. an older woman laughs and titters.
3. a man speaks while loading a gun cocking it and shooting. 3. a woman makes noises and laughs happily.

4. a male speaks as metal clicks and a gun fires once. 4. laughing and some mumbling.
5. a man speaks and then gunfire takes place. 5. laughing followed by a short groan then more laughing.

PANNs-Trans a man speaks followed by several gunshots. a person laughs and then laughs.
PFCA-Net a man speaks followed by several loud clicks (our model) and a gun shots. a woman laughs and speaks.

Table 3: The generated captions for the test audio clips from the
Clotho dataset.

Audio clip TheGym.wav
Ground truth 1. people converse in a very large echoing room.

2. a group of people indistinctly chatter in the background.
3. in the background a group of people indistinctly chatter.

4. an inaudible group of people converse in a very large echoing room.
5. many people talking in a enclosed space bar or restaurant while music plays.

PANNs-Trans many people talking in a restaurant.
PFCA-Net (our model) a large group of people are talking in a restaurant with music plays.

ing the different scale feature combinations based on the pro-
posed model are also given in Table 1. Moreover, in Table 2
and Table 3, we show some predicted captioning results for the
PANNs-Trans model [7] and the proposed FPCA-Net.

3.6. Results

Table 1 shows the performance of the proposed FPCA-Net and
the compared algorithms. Note that, for a fair comparison, the
results of the PANNs-Trans model without reinforcement learn-
ing are reported in Table 1. The compared models are all based
on the encoder-decoder architecture. The encoder aims to ex-
tract the high-scale acoustic feature, while the decoder gener-
ates textual descriptions solely based on this high-scale repre-
sentation. From Table 1, we see that our proposed FPCA-Net
outperforms other existing models that only use high-scale rep-
resentation. The FPCA-Net obtains the best performance com-
pared to the existing models. Moreover, Table 2 and Table 3
also illustrate that the proposed FPCA-Net model can capture
more scene information.

As described in the subsection 2.2, we know that the pro-
posed FPCA-Net mainly uses the feature P4 and P3. In Ta-
ble 1, we also give the results that the proposed FPCA-Net uses
the feature P4 and P2 instead of using features P4 and P3, i.e.,
FPCA-Net (P4 and P2). From the results, the proposed FPCA-
Net uses the features P4 and P3 to perform better than using
the features P4 and P2. This result also verifies the fact of the
limited representation ability of lower-scale features. However,
under this result, the performance of our proposed FPCA-Net

uses P4 and P2 is better than the existing models only using the
high-dimensional feature in most cases. In particular, the per-
formance of the proposed FPCA-Net using features P4 and P2

outperforms other existing models on the AudioCaps dataset.

4. Conclusion

We have presented a new encoder-decoder model called FPCA-
Net for AAC. Inspired by the success of the pyramid neural
network in the object detection tasks, we improved the pyra-
mid network and used it as the encoder of FPCA-Net to extract
the multi-scale audio features. While FPNs have achieved con-
siderable success in the visual domain, their application in the
audio field has been limited. Our work is the first attempt to
use the pyramid network in the audio captioning task. More-
over, to fully learn the multi-scale feature information in the
decoder, we have designed cross-content attention to fuse the
features of different scales, which allows effective information
to be propagated from low-scale to high-scale features. Exper-
imental results have shown that FPCA-Net outperforms other
existing algorithms on Clotho and AudioCaps datasets.
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